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Abstract

Dynamic failure events have occurred in the underground coal mining industry since its inception. 

Recent NIOSH research has identified geochemical markers that correlate with in situ reportable 

dynamic event occurrence, although the causes behind this correlative relationship remain unclear. 

In this study, NIOSH researchers conducted machine learning analysis to examine whether a 

model could be constructed to assess the probability of dynamic failure occurrence based on 

geochemical and petrographic data. Linear regression, random forest, dimensionality reduction, 

and cluster analyses were applied to a catalog of dynamic failure and control data from 

the Pennsylvania Coal Sample Databank, cross-referenced with accident data from the Mine 

Safety and Health Administration (MSHA). Analyses determined that 7 of the 18 geochemical 

parameters that were examined had the biggest impact on model performance. Classifications 

based on logistic regression and random forest models attained precision values of 85.7% and 

96.7%, respectively. Dimensionality reduction was used to explore patterns and groupings in the 

data and to search for relationships between compositional parameters. Cluster analyses were 

performed to determine if an algorithm could find clusters with given class memberships and 

to what extent misclassifications of dynamic failure status occurred. Cluster analysis using a 

hierarchal clustering algorithm after dimensionality reduction resulted in four clusters, with one 

relatively distinct dynamic failure cluster, and three clusters mostly consisting of control group 

members but with a small number of dynamic failure members.
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1. Introduction

Prior works [1-4] have shown that coal seams that have experienced dynamic failures tend 

to have a correlation between failure occurrence and particular geochemical markers. The 
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question of whether these markers are indicative of changes in (or effects on) the physical 

properties of the coal or rather are proxies for external features, such as depositional history 

and surrounding lithology, remains largely unanswered. Correlation does not necessarily 

imply causation, but observed empirical geochemical relations may serve as a practical 

technique to assess dynamic failure risks and to evaluate other confounders (such as 

coal rank, overburden thickness, regional stress orientation and magnitude, and mining 

design, among others). Researchers have developed numerous empirical relations in various 

attempts to predict other properties of interest [5], so it is reasonable to explore the 

possibility that dynamic failure propensity may be addressed in the same way.

With the explosive growth of ‘big data’, machine learning (ML) and artificial intelligence 

(AI) applications have been commensurately used to explore the correlations in these large 

data sets. These algorithms attempt to find patterns in the data, from which predictions or 

classifications may be made. However, as pointed out in McGaughey [6], the application 

of ML to geomechanics is not simple. Correlations can be especially complex. Thus, 

appropriate preconditioning and the careful selection of feature data are critical in order 

to determining which features correlate to a hazard, how they correlate to that hazard, and 

how assumptions on relationships between them can be confirmed or refuted. Additional 

research is thus required to ascertain why these correlations may exist.

ML applications in geohazard definition are now broadly utilized. Mira Geoscience offers 

an extensive software package, using both geomechanical features and their temporal 

variation, which can be applied in underground mines [7]. Other studies have compared 

the performance of several different ML algorithms to determine the best approach for 

forecasting rockbursts [8-11]. Several open-source software packages exist that allow 

researchers to select appropriate data and apply a model of their choice, including the 

package used in this study, known as Python Sklearn. However, there is no evidence that any 

of these methods have been specifically applied to examine the correlations between coal 

geochemical and compositional properties and rock mechanics problems.

The majority of ML works in the geohazard literature deal with features such as rock 

strength, Poisson’s ratio, microseismic event parameters, local geology, fault location, and 

rock quality designation (RQD). Models that use geochemical features are much less 

common. Toward this end, the analysis performed in this study uses geochemical data 

drawn from the Pennsylvania State Office of Coal (PSOC), cross-referenced with MSHA 

accident data after Lawson et al. [1] and supplemented with additional dynamic failure 

cases provided by Christopher Mark of the MSHA [12]. A binary categorical measure was 

applied to each coal record which indicated whether it came from a seam that had or had 

not experienced dynamic failure at any point in its history. It is important to note that 

this classification does not consider frequency, accident severity, mining methods, or any 

other attributes relevant to dynamic failure occurrence. Moreover, these data represent in 

situ accident occurrences, subject to many external and uncontrolled variables. These data 

consisted of 472 entries, each containing 37 descriptive features. These features included 

both numeric data and alphanumeric data and features that were computed from others in the 

set, and so were not independent. The objectives of these analyses were to:
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1. Investigate whether machine learning techniques could be applied to a larger data 

set than that used in Berry et al. [2];

2. Apply other machine learning approaches to investigate cluster analysis and 

dimensionality reduction with regards to data structure and dynamic failure 

status;

3. Explore whether machine learning could provide a classifier of dynamic failure 

and control coals using those geochemical features that had the greatest impact 

on model outcomes.

2. Data and Methods

2.1. Description of the Data Set

Initially, Lawson Prime data consisted of 472 entries with 37 features, including 1 column 

for a data label (1 = dynamic failure and 0 = control) and 1 column for a PSOC sample 

number. Prior to performing machine learning analysis on these data, several pre-processing 

steps were performed. First, all alphanumeric data features were deleted, along with features 

that had null data. To avoid ‘multicollinearity’ or the use of interdependent variables, 

a correlation plot between features was examined. When a high correlation (or anti-

correlation) exists, the features may not be independent. Hence, highly correlated features 

provide the same information, and so one should be dropped. Of the 37 initial features, 

17 were then removed. These removals only address the most highly correlated variables, 

however, and many of the remaining variables retain some degree of interdependency. Based 

on the number of null data entries, 2 additional features were deleted, leaving 18. The final 

data set consisted of 468 points. Of these, 95 points were from coal seam samples that 

reported dynamic failure and the remaining 373 were considered the control group.

Coal rank is determined by differences in the calorific value, fixed carbon content, and 

volatile matter content, which in turn impact the physical properties of the coal. Lignite, 

for example, at one end of this spectrum, has a low calorific value and low fixed carbon, 

is relatively soft with a dull or earthy luster, and may exhibit poorly developed or absent 

cleating. Anthracite, by contrast, has high fixed carbon and a high calorific value, and is hard 

with an adamantine luster and very well developed cleating. The data span all commercially 

mined coal ranks. The majority, however, fall within the bituminous range with 215 or 

approximately 45% falling within the high-volatility bituminous A range.

The distribution of the final 468 data points, with respect to state location and rank, is given 

in Tables 1 and 2.

A quick look at these data show that the vast majority of cases were taken from the 

Appalachia Basin. In addition, most data points were from bituminous coals. This is true of 

both dynamic failure and control cases. Additionally, the discrepancy between the number of 

dynamic failure versus control cases renders the data available for analysis, imbalanced with 

the majority population falling within the control group.
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Logistic regression and random forest analyses were performed on the scrubbed data set, 

assuming that the data were dichotomous (i.e., had or had not experienced dynamic failure), 

to see if an effective model indicating the potential of seam dynamic failures based on 

compositional features could be constructed. It must be emphasized that this analysis in no 

way seeks to replace the consideration of stresses, mining methods, overburden thickness, 

etc., as agents contributing to dynamic failures. Instead, by assuming that all other factors 

are equal, this analysis seeks to examine the possibility that compositional factors may 

provide an indication of whether some coals may have a higher propensity for dynamic 

failures.

The data set was then further examined for data structure using cluster analysis and 

dimensionality reduction. Cluster analysis was performed to see if an algorithmic 

application could extract the same clusters (or other clusters) as an analyst and to explore 

the data for relationships and structures not readily apparent in higher-dimensional space. 

Cluster analysis was performed using hierarchical density-based spatial clustering of 

applications with noise (HDBscan) [13]. Dimensionality reduction was performed using 

both principal component analysis (PCA) and t-distributed stochastic neighbor embedding 

(t-SNE), as described by Van der Maaten and Hinton [14].

2.2. Logistic Regression

After the number of features was reduced, the logistic regression package available in 

Python Sklearn [15] was applied. Numerous articles in the literature point out that in logistic 

regression, data normalization is not necessarily needed [16]. However, the different feature 

values retained for analysis in the Lawson Prime data set possessed values that varied by 

several orders of magnitude. This variation in data magnitude could potentially reduce or 

magnify their impact in both regression fitting and cluster analysis, and so normalization 

was applied. Tests were performed with no scaling or normalization, with data centering, 

data normalization, and data standardization. Centering provided the best results in terms 

of preliminary classification accuracy. This method was used to scale data in all subsequent 

work.

While models can be constructed using the entire feature set, this is not efficient and not 

all features may contribute to the logistic regression classification accuracy. It is important 

to try and select only the most significant features for regression based on defined criteria. 

Recursive feature elimination with cross-validation (RFECV) was applied to the edited 

Lawson Prime data set [15,17]. Recursive feature elimination involves a backward selection 

of predictors. First, a model is built using all the features and an importance score is 

computed for each. The least important is removed and the process is repeated. Based on 

this, a set of features that most effectively performs a classification is determined. These 

features can then be used to train a final model. The RFE algorithm used was stratified 

k-fold, with 2-fold cross-validation.

Another item to consider at this point is regularization. During RFECV, the best fits are 

determined by a maximum likelihood estimator. Regularization applies a penalty function to 

this expression, so the values of coefficients are driven smaller to prevent overfitting of the 

data [18,19].
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Finally, prior to the application of RFECV and training of the classification model, the 

distribution of data must be considered. As data in the edited Lawson Prime set are 

asymmetric or imbalanced, the probability of rare dynamic failure events would most likely 

be underestimated [20-22]. To account for this asymmetry, a series of trials were conducted 

with RFECV where the majority class was down-sampled to create a balanced data set [23]. 

From the set of 373 control points, a randomly selected set of 86 was used in combination 

with 86 dynamic failure cases. A total of 3000 such cases were tested, and the highest 

scoring features were selected from these 3000 trials.

The 18 features applied in calculating the optimal number to be used for the Lawson data set 

are listed in Table 3.

Figure 1 shows how many times a particular number of features was chosen as optimal 

using RFECV. In the 3000 trials, 4 features were determined to be optimal in the highest 

percentage of trials (462 of the 3000 trials or 15.4% of the total). This was followed by 

5 features in 406 trials, or 13.5% of the total. This plot shows how many features were 

selected as optimal, but not what those features were.

Examining the optimal features determined from RFECV, four features dominated the most 

common selection. Pyritic sulfur content was computed to have the highest ranking in 2997 

of the 3000 trials. This was followed by organic sulfur content, oxygen content, and volatile 

matter content. These 4 features were selected to perform logistic regression. The data were 

split into training and testing sets, the model was trained, and this model was then applied 

to the test data set. Due to the large asymmetry between dynamic failure and control data 

entries, as with RFECV, the data were reduced to all dynamic failure entries and a similar 

number of randomly selected control points. Of the 180 points that were selected, 60% were 

chosen for training and 40% for testing. Again, a total of 3000 trials with a 60/40 train–test 

split were conducted.

The classifier was trained on 108 points (60%) and tested on 72 points (40%). A confusion 

matrix was constructed for each test, giving the number of true positives (TPs), true 

negatives (TNs), false positives (FPs), and false negatives (FNs). The confusion matrix 

averages from the 3000 trials are shown in Table 4. The number of true negatives should 

be 32 and the number of true positives should be 40. The average results show 32.8 true 

positives, 25.5 true negatives, 7.2 false negatives, and 6.5 false positives. Table 5 gives 

the precision, recall, and F-beta scores computed on each trial and averaged over the total 

number of trials for the Lawson Prime data. Over the 3000 trials, the average precision and 

recall were approximately 81%.

2.3. Random Forest Classification

There are several different approaches used to perform classifications in machine learning 

besides logistic regression, but random forest has several advantages over other learning 

algorithms. These include a smaller chance of overfitting as compared to decision trees, 

less training time, and high accuracy within large databases. Disadvantages include the 

possibility of overfitting on some data sets. The algorithm, as implemented in Python 
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Sklearn, constructs multiple decision trees during training. The decision from the majority of 

these trees is then chosen as the final decision [24].

Several variants on a random forest application were tested, and the results were compared 

to each other and to the results from logistic regression. First, the random forest algorithm 

was applied to the Lawson Prime data using default program parameters. Second, since 

the data were imbalanced, decision threshold tuning [25,26] was applied to better address 

the correct classification of minority class data. Finally, to address the minority class and 

to reduce the chance of overfitting, a random hyperparameter search with cross-validation 

was applied [27]. While receiver operating characteristic (ROC) curves of true-positive 

rates versus false-positive rates can be produced, precision–recall curves are favored as 

a measure of algorithm effectiveness in the case of imbalanced data [28]. Because the 

data are imbalanced, the algorithm skill to predict the majority control cases (or a high 

number of true negatives) is of lower interest, and the cost of false negatives in dynamic 

failure classification is much higher than that of false positives. Thus, precision–recall 

curves, which provide more valuable information on classifier performance in the case of 

imbalanced data, were used here.

Recall and precision are given by:

Recall = Sensitivity = TP
TP + FN

(1)

Precision = TP
TP + FP

(2)

where TP = the number of true positives from the classifier; 
FN = the number of false negatives from the classifier; 
FP = the number of false positives from the classifier.

Thus, precision describes what proportion of positive identifications was actually correct. 

Recall quantifies what proportion of actual positives was correctly identified. Recall is then a 

measure which explains how well the model finds all of the minority class members [28].

The default decision threshold was set to 0.5, meaning that data points with normalized 

predicted class membership probabilities greater than or equal to 0.5 were assigned to Class 

1 (dynamic failure positive), and those with a probability less than 0.5 were assigned to 

Class 0 (control cases). Tuning this decision threshold can help address the imbalance and 

produce better results in terms of classifications [26]. Results with both a default threshold 

and a tuned decision threshold were examined. When tuning the decision threshold, several 

metrics may be used to numerically evaluate the performance of the model: the G-mean, the 

F-measure, and the Youden J statistic. For use in precision–recall curves, the F-score was 

used, defined as:
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F Score = (2 ∗ Precision ∗ Recall) ∕ (Precision + Recall)

(3)

A series of decision thresholds can be used to fit a training data set, and the classifier 

parameters from the training data applied to the test set. The F score metric is then computed 

for each test set.. The maximum value of the F-score was assigned as the ‘best’ value and the 

corresponding decision threshold was assigned as the optimal value. Accuracy can also be 

computed as the number of correct predictions divided by the total number of predictions, or 

(TP + TN)/(TP + TN + FP + FN). However, when dealing with class-imbalanced data, there 

is a significant disparity between the number of positive and negative class members. Hence, 

for negative members, there is a much higher probability of correct prediction and the true 

negatives dominate the accuracy parameter, giving a misleading view of model effectiveness 

[29]. Thus, accuracy was not used as a measure of model capability.

Along with the random forest analysis, results from a logistic regression were included for 

comparison purposes. In both cases, 468 points from the Lawson Prime data were used, with 

a 60/40 split between the training and test data. Results are shown for the test data. Default 

values in the Sklearn Python library [15] were used in both models, with the exception 

that 2000 trees were used in the random forest model. Overall, the random forest model 

performed better than the logistic regression. Figure 2 shows a graphic presentation of 

the precision–recall curves from the two models. A perfect classifier would have a point 

in the upper right-hand corner of the plot. The random forest classifier (shown in green) 

consistently scored higher than the logistic regression (shown in blue). The random forest 

classifier had a precision of 96.7% at its highest F-score, meaning that 96.7% of the points 

in the minority positive class were classed correctly. Similarly, a recall score of 76.3% 

indicates that 76.3% of the total number of dynamic failure cases was correctly classed.

Sklearn also allows a measure of the importance of each feature used in the random forest 

model to be computed. In Sklearn, the Gini importance [30] is used as this measure. 

Importance levels are normalized so the sum over all features goes to 1. The features with 

importance measures greater than 0.05 are oxygen, pyritic sulfur, volatile matter, the Van 

Krevelen ratio, organic sulfur, moisture, and vitrinite reflectance. For the most part, these 

features are the same as those found in all the other analyses, indicating the consistency in 

critical feature selection.

Finally, although the threshold was tuned in the results just shown, the default algorithm 

values used in the random forest model may not be optimal for model building. To examine 

this, a feature search using cross-validation was performed. This was completed through 

the use of a randomized grid search of parameters using 5-fold cross-validation. A total of 

500 different combinations were examined. The best parameters obtained were then used to 

run another random forest and the results evaluated as before. The parameters found in the 

search, which were different from the default values used previously, were: the number of 

trees = 1800, the minimum samples per split = 5, and the minimum samples per leaf = 2. 

The precision–recall plot for these values, again using a 60/40 training–test split, is shown in 
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Figure 3. The ‘best’ point on the precision–recall curve, as defined by the maximum F-score, 

is also shown.

Table 6 provides the threshold, precision, and recall values for the model after 5-fold cross-

validation and threshold tuning. The optimal threshold is slightly different, but precision 

and recall show no change. Thus, while cross-validation is probably a desirable processing 

step to ensure that the data are not overfitted, overall model capability is not different from 

simple threshold tuning.

Because the majority of dynamic failure cases come from the western U.S. and the majority 

of control cases from eastern coal fields, it could be argued that simply dividing the data 

between states of occurrence would produce equal or better results than a machine learning 

model. This sort of model was constructed by placing all eastern coal points in a control 

class and all western coals in the dynamic failure class. The result of this very simple model 

was a precision score of 86.6% and a recall score of 78.8%. Thus, simply classing the 

occurrences by state yields a good independent classifier. However, these results are not as 

good as those from a random forest model, nor do they explain any potential risk factors. A 

summary of precision and recall for the various models is shown in Table 7.

In summary, a random forest classifier appears to provide superior performance over logistic 

regression, as measured by precision and recall values. Tuning the decision threshold 

provides the same level of model improvement as performing a cross-validation on the 

features, although the cross-validation may provide some protection from overfitting. In 

operating on the class-imbalanced Lawson Prime data set, the random forest model achieves 

a precision score of 96.7% and a recall score of 76.3%. In other words, of the events that 

were classed as dynamic failure seams by the model, 96.7% actually experienced dynamic 

failures. Of the total number of bump-positive events, 76.3% were correctly classed.

2.4. Cluster Analysis and Dimensionality Reduction

Another objective of the current study was to explore possible relationships between features 

measurable in coals with respect to the occurrence of dynamic failures. This was carried 

out using cluster analysis to explore possible groupings in the data based on the feature 

properties.

Several types of cluster analyses are available in statistical software packages. In this study, 

the hierarchical density-based spatial clustering of applications with the noise (HDBscan) 

algorithm was used [13,31,32]. HDBscan offers several advantages over other clustering 

algorithms. In line with other true clustering algorithms, HDBscan delineates density-based 

clusters as opposed to partitions. It does not require spherical or elliptical groupings for good 

performance; it does not require any specification of the number of clusters; and it has the 

ability to omit single points, noise, and outliers from the cluster membership.

The number of features used was reduced to the top seven, as determined from random 

forest analysis. These were: oxygen, pyritic sulfur, the Van Krevelen ratio, volatile matter, 

moisture, organic sulfur, and vitrinite reflectance. As few as four features were analyzed, but 

the results were not dramatically different from the results using seven features.
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As with logistic regression analysis, feature values were scaled using a centering algorithm. 

Scaling preserves the shape of the original distribution and does not significantly change 

the information embedded in the original data [33], nor does it reduce the importance of 

outliers. With the seven features listed above, using a minimum cluster size of 10 points and 

a minimum number of 3 samples, HDBscan found three clusters. The minimum cluster size 

is an intuitive parameter as it defines the smallest size grouping in order to be considered 

a cluster. Minimum samples are less intuitive, but broadly speaking, they determine how 

conservative clustering is. The larger the value, the more points that will be declared as 

noise, and clusters will be restricted to progressively denser areas [13].

From the seven-feature clustering, a representative cross-plot of the clusters is shown in 

Figure 4. This plot is a two-dimensional slice through a seven-dimensional space. Here, the 

three clusters found by HDBscan are shown in blue, orange, and green. The points in grey 

were considered outliers and were not assigned to a cluster. The triangles denote the points 

from control seams and the circles denote the dynamic failure seams, as determined in the 

initial data selection. The three clusters are relatively well separated but do not separate the 

dynamic failure and control group seams.

The main objective of this clustering exercise was to see if an unsupervised machine 

learning technique could separate the dynamic failure and control coal members, without 

any additional processing or operator interpretation. While some interesting relations were 

seen, this approach did not appear to be successful in discrimination between the two 

classes. One reason the classes could not be discriminated may be the number of dimensions 

present in the data and the complexity of the resulting cluster analysis. A means to explore a 

simpler data structure was pursued through dimensionality reduction.

Although the Lawson Prime data set can be considered to be of limited size, both in 

terms of the number of members and features, even this limited dimensional data can be 

difficult to visualize and extract useful information. As data dimensions increase, the ‘curse 

of dimensionality’ [34] arises, and model performance suffers. Sample density decreases 

exponentially as dimensions increase, and eventually the concept of distance between points, 

as used in cluster analysis, becomes undefined. One way of overcoming the curse of 

dimensionality that arises with increasing features and limited training points is to employ 

dimensionality reduction to project data into lower dimensions. In addition, projections of a 

higher-dimension sample space onto lower dimensions may reveal structures in the data that 

are not otherwise apparent.

There are several approaches that can be used to perform dimension reduction, with the most 

common being principal component analysis (PCA). PCA assumes linear relations between 

features and works to rotate and project data along directions of increasing variance. PCA 

can be very successful when applied to data with linear relationships, but fails when the data 

do not lie on a linear subspace.

At this stage of analysis on the Lawson Prime data set, it was not clear that features can be 

represented as linear combinations of each other, as is assumed in PCA. Thus, both a linear 

(PCA) and a nonlinear dimensionality reduction algorithm were employed to determine 
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which provided more interpretable results. The nonlinear dimensionality reduction algorithm 

applied was t-distributed stochastic neighbor embedding (t-SNE). Briefly, t-SNE computes 

the probability that pairs of points in a higher-dimensional space are related and computes 

a lower-dimension embedding that attempts to preserve that distribution [14,35-37]. The 

main advantages of t-SNE are that it can be applied to nonlinear data and can preserve 

local and global data structures. Unfortunately, it is computationally expensive and is 

nondeterministic.

PCA analysis was performed with the same seven features, retaining the top four principal 

components. The variance ratios explained by the first four principal components are given 

in Table 8. The top two components explained 75.6% of the variance, the top three explained 

85.4%, and the top four explained 93.2%.

Figure 5 shows the scaled Lawson data points projected onto the top two principal 

components, PCA1 and PCA2, showing the results of reducing the feature dimensions 

from 7 to 2. In this figure, the labels ‘0’ (control group, brown) and ‘1’ (dynamic failure 

group, blue) were plotted at the centroid of the respective point clouds. The bumping and 

non-bumping points were clustered with like members. However, while there was some 

separation between the classes, it may not be sufficient to identify them as distinct groups 

without a priori information of the membership class. Dynamic failure cases were assembled 

at the smallest values of components 1 and 2.

To examine the impact of each of the seven retained features on the four principal 

components, both an impact table and a biplot were produced [38,39]. From this analysis, 

it was found that percent volatile matter dominated PC1. Pyritic sulfur exerted a strong 

positive impact on PC2, and organic sulfur had a strong positive impact on PC3.

While performing PCA on the Lawson data did show some separation between dynamic 

failure and control data, the separation was not sufficient to allow distinct clusters to 

be identified without a priori information. t-SNE was applied to the same data set to 

search for identifiable structures in the data. Algorithm parameters used were the number 

of iterations = 5000, the learning rate = 20, early exaggeration = 10, perplexity = 25 

and metric = ‘Manhattan’. When using a larger number of dimensions, several authors 

recommend against the use of an L2 norm (Euclidean distance) [34], and so a ‘Manhattan’ 

metric or L1 norm was used. Perplexity provides a general measure of the structure of the 

data, with larger values emphasizing more global structures, as opposed to local variations. 

Larger values of perplexity can be thought of as using more neighbors in the calculation. 

Wattenberg et al. [40] recommend that the perplexity should not be set much greater than the 

number of data points and to tailor the parameters only to show possible structure in the data 

set, as opposed to interpreting shapes and distances between clusters.

Figure 6 shows t-SNE results when processing the scaled 7-dimensional data. Retaining 

two components from t-SNE showed improved separation between clusters. It was found 

that two major clusters exist in the data: one of nearly exclusive control points and one 

of mostly dynamic failure data points. There is an interesting structure to this plot, as it 

appeared that the control coals are mostly sensitive to tSNE1 and the bumping coals are 
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mostly sensitive to t-SNE2. These possible dependencies need further investigation. There 

were several bumping data points scattered throughout the non-bumping cluster, along with 

bumping points in the non-bumping group, which require further investigation. The majority 

of bumping points are clustered in a group at the bottom of Figure 6.

Preliminary analysis was completed to examine if HDBscan could independently find 

control and dynamic failure clusters from the t-SNE-processed data. The same clustering 

parameter values used previously were applied to the two-dimensional t-SNE values, as 

plotted in Figure 6. Figure 7 shows the results of this cluster analysis.

As in other plots, triangles and circles indicate non-bumping and bumping coals, 

respectively. HDBscan computed four clusters in the data, as shown in Figure 7.

In the two component t-SNE results of Figure 6, a number of points from control seams 

were located among dynamic failure points, and vice versa. A total of 17 control data points 

were located in the area of dynamic failure points. In addition, 29 dynamic failure points 

were scattered throughout the control population. Within all measurements, noise may be 

present which could cause these points to be located within groups opposite from their 

ground truth. Similarly, these data may be outliers that do not follow the general behavior 

seen on most points of either population. However, it is more likely that this may reflect 

the impact, or lack thereof, of mining-induced stresses and other in situ, real-world variables 

that impact dynamic failure occurrence.

To further examine the potential reasons for this structure, each of the points was identified 

in the original 18 dimensional feature space and properties examined. First, the data points 

belonging to surface mines were identified and removed from consideration. This removed 9 

points from the control population that were plotted among the dynamic failure coal points 

and 5 surface mines from the complementary population. Thus, the number of apparently 

anomalous data points was reduced by 14. The remaining points were examined in terms of 

the mines from which they were taken, geologic setting, and overall geochemical signatures.

The most critical question to be addressed in these data concerns why dynamic failure points 

are plotted in the control group. This is a false-negative case and bears the highest cost in 

terms of potential risk analysis. The distribution of the remaining 24 points in this group 

with a state and basin distribution is shown in Table 9 (as determined from entries in the 

PSOC database).

In this group, 17 points were taken from the Appalachian Basin and 7 were taken from 

the Uinta-Piceance Basin. A more detailed look at the source of the 24 data points showed 

that two were reported from an eastern mine that failed while mining took place over 

unknown barrier pillars in a lower mined seam. The cause of the bumps was attributed to 

this anomalous stress distribution. Six of the points came from the deep gassy L.S. Wood #3 

mine in Colorado, and may be the result of gas-driven failure. One sample had geochemical 

values that matched control coals, but was from a mine under unusually deep cover. This 

loading may have been the critical factor in the failure. Four points were plotted close to 

the boundary of the dynamic failure group, and so they may be simple outliers to that 

population. Six had geochemical values that matched the averages for control coals but had 
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pyritic sulfur ranges that were closer to the dynamic failure averages. Finally, five matched 

the control group values, and no further mine information could be found.

The second group of anomalous points was plotted closer to the dynamic failure group data, 

even though they were not reported as having experienced a reportable event. Four of these 

came from the Cannel or King Cannel seams in Utah. No information could be found on the 

source mines. These four points had geochemical values closer to the dynamic failure group 

coals, but experienced no reportable events. Further investigation is needed to determine if 

these were simply too shallow to experience dynamic failure or if they lack other necessary 

contributing factors to produce dynamic failure occurrence. The last four points were mixed 

in terms of their composition as regards the average of dynamic failure coals. It is not clear 

why these coals plot as they do, although two were taken from the Lower Kittanning seam. 

All points from this seam had property values well in the control range, except for these two 

which may represent statistical outliers.

The average values for the features used in t-SNE for dynamic failure, control, and the two 

anomalous classes are shown in Table 9. In Table 9, the feature values for the control points 

that plot in the dynamic failure cluster match the general values for dynamic failure coals, 

and vice versa. The exception to this was based on the sulfur content.

For the seven highest ranked random forest features, there were no significant differences 

between the ‘anomalous’ data points and the majority of points in that group. For example, 

the organic and pyritic sulfur did not show consistent differences between the four groups. 

However, oxygen, percent volatile matter, Van Krevelen ratio, percent moisture, and vitrinite 

reflectance features showed a consistent correlation. For all these features, the average 

values of the ‘Bump in Bump group’ and the ‘No-Bump in Bump group’ were similar in 

value. Likewise, the ‘No-Bump in No-Bump group’ and the ‘Bump in No-Bump group’ 

were similar (Table 10). Thus, it appears that even though they did not fail dynamically, 

the control points in the dynamic failure group had geochemical markers more similar 

to the dynamic failure coals. Other parameters thus need to be examined for these coals. 

Likewise, the coals that experienced dynamic failure but appeared to be in the control group 

had feature values that were more similar to the bulk of the control coals. This echoes the 

findings of Babcock and Bickel [41] which exhibit that nearly any coal can be induced to 

dynamically fail under the appropriate conditions. However, some may do so with relatively 

greater ease. These coals all need to be studied in more detail in order to determine why 

they have geochemical values that match the opposite population. Additionally, more studies 

are greatly needed to determine if the presence (or dearth) of certain chemical species 

contributes to dynamic failure on a fundamental level.

3. Summary

The objectives of this study were: (1) to determine if machine learning could be applied to 

a larger data set than previously attempted, (2) to apply cluster analysis and dimensionality 

reduction to look for previously unnoticed data structure, and (3) to explore if machine 

learning could provide an accurate model to discriminate coals that experienced dynamic 

failures based on geochemical signatures. Based on analyses summarized in this study 

Hanson and Lawson Page 12

Minerals (Basel). Author manuscript; available in PMC 2024 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and prior works, it appears that there is at least an empirical correlation between coal 

compositional features and dynamic failure occurrence in an in situ mining environment. 

However, it is not clear what the underlying cause of this correlation is; whether the 

compositional attributes are proxies for other geologic factors, they exert a fundamental 

effect on coal physical properties, or the observed relation is coincidental. Recent work 

carried out by Kim et al. [4] suggests that mineral content may exert some impact on the 

intrinsic ability of coal to retain energy prior to failure, and that this may differ depending 

upon the degree of cleat development. It may be possible that features such as vitrinite 

reflectance and the Van Krevelen ratio serve as proxies for cleat development, which is an 

attribute that was not directly measured in this study.

Logistic regression performed on the Lawson data determined that 6 features of the 18 that 

we examined exerted the biggest impact on the results. These features were pyritic sulfur, 

organic sulfur, oxygen, percent volatile matter, percent ash, and vitrinite reflectance. These 

features were used to build a model and 3000 trials were performed to account for the 

relative sparsity of the dynamic failure cases; the average recall of the model was 81.9%. 

Thus, the regression model correctly classified the data points approximately 82% of the 

time.

A comparison was made for both logistic regression and random forest classifiers where a 

default threshold of 0.5 and a tuned threshold were applied. The random forest classifier 

performed better than the logistic regression in both cases, achieving a precision of 96.7% in 

the tuned threshold case.

Cluster analysis was performed using the top seven features determined with the random 

forest classifier. The application of HDBscan resulted in three clusters being found in the 

scaled data. The significance of these clusters is not clear. The dynamic failure samples 

showed some separation in the two-dimensional projection of seven-dimensional data, but 

not enough to allow automated separation into their own cluster.

Both linear (PCA) and nonlinear (t-SNE) dimensionality reduction operations were applied 

to the data. Again, the top seven features determined from the random forest classifier were 

used. In two dimensions, the PCA plot showed a mass of bumping points at small values 

of PCA1 and PCA2, corresponding to small pyritic and organic sulfur content and small 

volatile matter values. This aligns with prior work.

The application of t-SNE to the Lawson set provided a better separation of the dynamic 

failure and control data in two dimensions. The dynamic failure cases formed a relatively 

distinct grouping, although some points were dispersed through the control data cloud. 

Cluster analysis on t-SNE-processed data resulted in the HDBscan finding four clusters, 

with one made up of mostly dynamic failure data and the other three predominantly made up 

of the control group.

Finally, an explanation of why some dynamic failure coals were plotted with control coals, 

and vice versa, is needed. As a blanket statement, it appears that this mixture is due to 

additional confounding factors. For dynamic failure samples scattered in the control group 

shown in the t-SNE plot of Figure 6, 19 of 24 samples could be at least partially explained 
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by other confounding factors. For the complementary set, four points were taken from 

a Utah coal mine which compositionally matched dynamic failure coals. However, these 

samples did not suffer dynamic failures. Information regarding the mines from which these 

samples originated could not be found in the MSHA data retrieval system or from extensive 

internet searches.

In conclusion, a successful machine learning classifier, with 96.7% precision and 76.3% 

recall rates in classifying coals pertaining to whether they experienced dynamic failures or 

not, based on geochemical data, was constructed. A simple classifier based on the state 

of origin did not perform as well as a random forest, although the state model worked 

surprisingly well. Dimensionality reduction using t-SNE revealed structure in the data that 

offered opportunities to investigate what appear to be anomalous data points.
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Figure 1. 
Optimal number of features selected from 3000 trials in the Lawson Prime data set. Four 

features were chosen most often in 462 out of 3000 trials.
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Figure 2. 
Precision–recall curves for both a random forest and a logistic regression model of the 

Lawson Prime data set using 18 features. The black dot and star show the precision–recall 

points for the best F-score after threshold tuning on the logistic regression and random forest 

models, respectively. The orange dotted line shows what performance would be expected if 

the model had no classification skill.
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Figure 3. 
Precision–recall curve for Lawson Prime data after completion of 5-fold cross-validation. 

The ‘No-Skill’ line and the best precision–recall point defined by the maximum F-score are 

shown.
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Figure 4. 
Clustering results from HDBscan when using the top seven features, as determined by 

random forest analysis after 5-fold cross-validation. This two-dimensional cross-plot shows 

three clusters found with HDBscan in different colors. The clusters are distinct, but do not 

distinguish dynamic failure from non-failure coals.
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Figure 5. 
Plot of the two-dimensional principal components for the Lawson Prime data set. Blue 

points referenced with ‘1’ signify dynamic failure coal members. Brown points with ‘0’ are 

the majority class control members.
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Figure 6. 
t-SNE results where seven dimensions were reduced to two for the Lawson Prime data set. 

In general, the bumping points (‘1’, blue) were well separated from the non-bumping (‘0’, 

orange).
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Figure 7. 
Plot of the t-SNE-processed data after the application of HDBscan. Four clusters—green, 

red, orange, and blue—were found. The blue cluster is largely the dynamic failure coal data.
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Table 1.

Distribution of data samples by state of occurrence.

Distribution of Seam Data by State

State PA WV KY UT CO AL TN IL

Number of Data Points 191 108 66 55 36 5 3 4
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Table 2.

Distribution of data samples by coal rank.

Coal Rank Number of Data Points

Anthracite 15

Semi-anthracite 12

Low-volatility bituminous 54

Medium-volatility bituminous 73

High-volatility bituminous A 215

High-volatility bituminous B 57

High-volatility bituminous C 38

Sub-bituminous A 3

Lignite 1
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Table 3.

Features retained from the Lawson Prime data set used in RFECV.

Feature Numbers Features Used in RFECV Analysis

1 % Moisture (as-received)

2 % Ash (dry)

3 % Volatile matter (dry)

4 % Carbon (dry, ash free)

5 % Hydrogen (dry, ash-free)

6 % Nitrogen (dry, ash-free)

7 % Organic sulfur (dry)

8 % Oxygen (diff)

9 Carbon-nitrogen ratio (dry, ash-free)

10 Hydrogen–carbon ratio (dry, ash-free)

11 Van Krevelen ratio (dry, ash-free)

12 % Pyritic sulfur (dry)

13 % Vitrinite (mineral-matter-free)

14 % Liptinite (mineral-matter-free)

15 % Inertinite (mineral-matter-free)

16 % Vitrinite reflectance

17 Oxygen–inertinite ratio

18 Vitrinite–(inertinite + liptinite) ratio
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Table 4.

Confusion matrix for logistic regression classifiers showing average values.

Actual Values

T = 1 F = 0

Classifier Results
T = 1 32.8 6.5

F = 0 7.2 25.5

Total 40 32
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Table 5.

Average precision, recall, and F-score for test classifiers.

Average Value Standard Deviation

Average precision 0.812 0.034

Average recall 0.810 0.032

Average F-score 0.810 0.033
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Table 6.

Random forest performance after 5-fold cross-validation and threshold tuning.

Random Forest Model after 5-Fold Cross-Validation

Tuned threshold 0.492

Maximum F-score 0.853

Best model precision 96.7%

Best model recall 76.3%
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Table 7.

Precision and recall results for the tested classifiers.

Precision Recall

Logistic regression down-sampled majority class 81.2% 81.0%

Logistic regression default threshold 78.9% 63.1%

Logistic-regression-tuned threshold 85.7% 63.2%

Random forest default threshold 96.5% 76.3%

Random-forest-tuned threshold 96.7% 76.3%

Random-forest-tuned hyperparameters 96.7% 76.3%

Simple state classifier 86.6% 78.8%
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Table 8.

Variance ratios explained by the first four principal components for the Lawson Prime data set.

Principal Components Variance Ratios Explained

1 0.463

2 0.293

3 0.098

4 0.078
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Table 9.

State and basin distribution of dynamic failure data plotting in the control group.

State Distribution

Kentucky West Virginia Colorado Utah

8 9 6 1

Basin Distribution

Appalachian Uinta-Piceance

17 7
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Table 10.

Average feature values for the data populations, with surface mines removed.

Pyritic 
Sulfur

Organic 
Sulfur

% Moisture
(as-Received)

% Volatile
Matter (Dry) Oxygen Van Krevelen

Ratio
Vitrinite

Reflectance (%)

Bump in non-bump 
group 0.144 0.558 1.479 28.80 5.479 20.43 1.209

Non-bump in bump 
group 0.386 0.639 7.315 39.48 13.17 9.949 0.744

Bump points 0.130 0.482 5.514 40.36 12.23 8.106 0.627

Non-bump points 1.268 0.876 2.486 29.14 6.071 16.75 1.252
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